1	Human-induced fear in wildlife: A review
2	
3	Monica Lasky ¹ and Sara Bombaci ¹
4	
5	1 Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort
6	Collins, CO 80523 USA.
7	
8	
9	Corresponding Author
10	Monica Lasky, Present Address: 110 Newins-Ziegler Hall, Department of Wildlife Ecology and
11	Conservation, University of Florida, Gainesville, FL 32611. lasky.monica@ufl.edu
12	
13	
14	

15 ABSTRACT

16

Humans, like natural predators, can induce fear in wildlife, which has the potential to alter 17 18 species-level survival and fitness. Though anthropogenic impacts on wildlife have been studied 19 in detail, how wildlife respond behaviorally to human presence has been less studied. Here, we 20 provide a literature review on how humans interact with wildlife populations through the ecology 21 of fear framework. Fear responses can be proactive or reactive, and can go beyond behavioral 22 changes to alterations in physiology (such as increases in stress) or alterations in individual 23 chromosome structure. Wildlife are more likely to flee from humans if they possess a larger body 24 size, are female, or have fear-associated genotypes. Intelligence and individual differences lead 25 to variations in wildlife's fear responses to humans that can make studying fear difficult. 26 Wildlife fear responses to humans depend on environmental factors, including context-specific 27 human presentation and whether the animal was in urban or rural habitats. Human-induced fear 28 in wildlife may have cascading impacts on broader wildlife communities and habitat structure 29 caused by changes in how individual species interact with other species and the environment. 30 31 Keywords: human-induced fear, ecology of fear, anthropogenic disturbance, animal behavior 32 33 34 35

36 INTRODUCTION

37

38 The 'ecology of fear' predicts that prey use anti-predation strategies such as fleeing or 39 habitat avoidance as a psychological response to predator-induced stress (Brown et al. 1999). 40 The concept of 'fear' in animals has been the subject of a considerable debate concentrating 41 around whether 'fear' is experienced by wildlife, or if what humans perceive as fear in wildlife is 42 more akin to risk perception or other behaviors that can be correlated with stimuli humans 43 associate with fear (Gaynor et al. 2019). 'Fear' in wildlife can be defined as 'changes in specific 44 wildlife behaviors (such as spatiotemporal avoidance behavior, fleeing) or physiology (such as increased cortisol levels) in response to a stimulus (Brown et al. 1999). Some authors believe 45 46 that 'fear' induced by a predator upon prey is a product of an interspecific interaction in which 47 predators alter prey behavior through indirect means (i.e., inducing fear) in addition to direct 48 predation that alters population density (density-mediated interactions; Abrams 1995; Gaynor et 49 al. 2019). Changes in prey behavior can lead to a decreased use of important resources to avoid 50 high predation risk, which can negatively impact prey survival and reproduction (Anderson et al. 2022; Montgomery et al. 2020; Palmer et al. 2017). African herbivores, for example, avoid 51 52 woodlands where ambush predators hunt frequently, which can impact herbivore foraging 53 efficacy (Ford et al. 2014; Riginos and Grace 2008; Riginos 2015; Thaker et al. 2011; Valeix et 54 al. 2009). Predator-induced fear may, therefore, change how prey interact with foraged plant 55 species (Caravantes 2020; Clinchy et al. 2016; Pringle 2018; Ripple and Beschta 2004; Schmitz 56 et al. 2004; Wang et al. 2015). This phenomenon was famously observed in Yellowstone 57 National Park, USA, where the presence of wolves (Canis lupus) decreased foraging efficacy of 58 elk (Cervus canadensis) on aspens (Populus tremuloides; Ripple and Beschta 2004). By

changing prey foraging behavior, predator-induced fear may promote heterogeneity and
ecosystem functioning (Ford 2015; Schmitz et al. 2010; Suraci et al. 2019), such as through
alterations in nutrient deposition in various habitats (see Pringle 2018).

62 Humans, like natural predators, can induce fear in wildlife, and have the potential to alter 63 species survival and broader community dynamics (Ford 2015; Gaynor et al. 2019; Schmitz et al. 64 2010; Suraci et al. 2019). Though human-induced fear may have similar impacts on wildlife 65 compared to predator-induced fear (Gaynor et al. 2019), it is a far less-studied phenomenon that 66 may differ from predator-induced fear due to the pervasive impacts of humans on nature (Ford 67 2015; Gaynor et al. 2019; Schmitz et al. 2010; Suraci et al. 2019). Human activity is increasingly altering fear behavior in wildlife and impacting how species respond to non-human landscapes of 68 69 fear (Gaynor et al. 2019). Multiple papers have documented the consequences of human-induced 70 fear (see Gaynor et al. 2019), but there has not yet been a systematic review of the literature on 71 how fear of humans affects wildlife and ecosystems. Such a review is timely and warranted 72 because human ecological disturbances are increasingly detrimental to wildlife populations and 73 are threatening numerous species with extinction (Ford 2015; Schmitz et al. 2010; Suraci et al. 74 2019). Furthermore, wildlife management practitioners are increasingly using human activities to 75 intentionally induce fear in wildlife (Gaynor et al. 2020; Wilkinson et al. 2020). It will be 76 important to shed light onto how human presence may change wildlife behavior, which has the 77 capacity to alter species vital rates (Ford 2015; Schmitz et al. 2010; Suraci et al. 2019) and 78 further risk shrinking populations.

Here, we review literature on wildlife's responses to human-induced fear, defined as fear (an increase in fear-associated behaviors in wildlife, such as avoidance or fleeing) in response to the presence of humans. We first provide an overview of the human-induced fear literature, and

82	then evaluate common responses of wildlife to human-induced fear, including changes in
83	activity/behavior, physiology/fitness, and habituation to humans. We then discuss situational
84	factors that can influence wildlife responses to human-induced fear, such as species traits, type of
85	human disturbance (s.a. recreationalists or hunters), habitat, genetic variability, and individual
86	variability. We also discuss currently known cascading impacts of human-induced fear on
87	communities and ecosystems. We conclude by identifying several gaps in the current
88	understanding of human-induced fear and discuss the implications of human-induced fear for
89	wildlife conservation. This paper provides an in-depth overview into how human-caused fear in
90	wildlife can impact free-living animals across numerous ecological scales, and how we can
91	improve future research endeavors to shed light on the impacts of the human predator.
92	
93	METHODS
94	
95	We conducted a literature search using Web of Science on February 8, 2022, using the
96	following search terms:
97	TS=(human* OR anthropogenic) AND TS=(fear) AND WC=("Ecology" OR
98	"Biodiversity Conservation" OR "Marine & Freshwater Biology" OR
99	"Entomology" OR "Evolutionary Biology" OR "Fisheries" OR "Ornithology")
100	We also filtered for document types of articles that were not reviews or meta-analyses
101	(i.e., only original research articles). Studies that appeared in the search were then included in
102	this review if they met the following criteria:

103 1. Fear. The study specifically mentions any fear-associated response (e.g., avoidance, risk-104 taking, vigilance, fleeing, faster movement), as well as any potential effects this had on 105 the species physiology, interactions, or on the inlying community or ecosystem. 106 2. *Human-induced*. Whether or not wildlife directly responded to human presence or proxy 107 of human presence. Studies that included fear of infrastructure (such as buildings, 108 vehicles, urbanization, residential areas, human settlements) or land use (e.g., 109 commercial, industrial) were not included unless the land use was specific to use of 110 humans on foot (such as areas protected from hunting or hunting zones). This is to limit 111 confounding factors, including but not limited to wildlife showing fear towards light, 112 sounds, vehicles, or other stimuli that are not humans themselves, which can also cause

fear but were not of interest in this study.

Effects on wildlife. Studies were included if they specifically analyzed how wildlife
responded to humans and how this affected the species, community, or ecosystem.

116 We extracted several variables from each of the papers included in this review (Table 1).

117 We identified whether an article was observational or experimental, and collected the year,

118 country, and habitat in which the study was conducted (Table 1). Habitat categories were adapted

119 from Landsat satellite imagery classification scheme (Landsat 8) and are listed in Table 1. If the

majority ($\sim 80\%$ +) of the study was conducted in a single habitat type, then that habitat type was

121 assigned to the study, otherwise we chose 'multiple' habitat types. The species being studied and

122 its associated trophic level (carnivore, omnivore, herbivore) and group (mammal, bird, reptile,

123 amphibian, bird, fish, invertebrate) were also recorded. How humans induced fear in wildlife,

such as human presence or hunting pressure, was recorded (Table 1). Whether the responses of

125 wildlife to human-induced fear caused changes in wildlife behavior (movement patterns,

126 foraging behavior, species occupancy, etc.) or vital rates (changes in physiology, survival, 127 reproduction, population size, etc.) was recorded as the 'type of response' (Table 1). We also 128 recorded the scale on which human-induced fear caused changes, which could be the following: 129 species (whether species-scale responses were recorded in response to human-induced fear, such 130 as changes in flight initiation distance or species occupancy), community (changes induced in 131 species interactions, such as changes in predation), or ecosystem (changes seen at the ecosystem 132 scale, such as nutrient deposition or landscape-level effects). Because human-induced fear 133 responses in individual animals were rarely provided on an individual-animal basis - instead 134 usually offered as an averaged response from several individuals - individual and population-135 wide responses to human-induced fear were pooled into a general 'species-scale' response 136 category. Finally, we also recorded whether the response to human-induced fear was considered 137 significant by the study's authors and recorded the specific information about how wildlife 138 responded to human-induced fear (Table 1). All data were recorded in Google Sheets and 139 summarized in figures produced by Tableau Public (version 2020.3).

140

141 OVERVIEW OF HUMAN-INDUCED FEAR IN LITERATURE

142

An extensive literature search revealed 81 peer-reviewed papers that documented humaninduced fear on wildlife populations. Literature on human-induced fear has drastically increased since 2010 (Fig 1a). Though human-induced fear has been studied on all non-Antarctic continents, a substantial portion (n=21 out of 81 articles, or 25.9%) of studies have been based in the United States (Fig 1b). Though most studies (n=45) were conducted in more than one habitat, the most frequently studied habitat categories were human-dominated (n=46) followed by woody

149	plant-dominated (n=41), grass-dominated (n=30), agriculture (n=16), and finally aquatic (n=14;
150	Fig 1c). Most studies analyzed the impacts of human approach (n=34 articles), human
151	presence/activity (n=24), and hunting (n=20; Fig 1d) on wildlife's fearful responses to
152	anthropogenic disturbance. Mammals (n=50) and birds (n=38) were by far the most studied
153	groups, and only three articles in this review studied human-induced fear responses in fish. No
154	articles on reptiles, amphibians, or invertebrates were found in this review. Large-bodied
155	mammals - notably cougars (Puma concolor; 6 studies) and deer (Cervidae sp.; 17 studies) -
156	were studied the most frequently.
157	Studies were conducted across all guilds, with 21, 32, 16, and 22 studies analyzing
158	human-induced fear in carnivores, herbivores, omnivores, and multiple guilds, respectively. All
159	the articles in the review analyzed how human-induced fear impacts individual species, with a
160	handful of articles further analyzing how human-induced fear can broadly impact ecological
161	communities (n=3 articles) and ecosystems (n=1). Only three (n=3) studies found a non-
162	significant response to human-induced fear; all others (n=79) found a significant response.
163	Finally, 74 articles studied behavioral responses of wildlife, and only seven articles analyzed
164	how human-induced fear could alter animal fitness or survival.
165	
166	RESPONSES OF WILDLIFE TO HUMAN-INDUCED FEAR
167	
168	In this section, we review common observations of how wildlife change activity patterns
169	or behaviors in response to human-induced fear in the literature.
170	
171	Changes activity and behavior

172 The literature on human-induced fear highlights two main categories of responses of 173 wildlife to human-induced fear: reactive responses (fleeing from an approaching human) or 174 proactive responses (spatial or temporal avoidance). Flight initiation distance, or the distance at 175 which an animal flees from human approach, was a common metric used to identify reactive 176 human-induced fear responses in various species, especially in birds (see Appendix 1). Most 177 species fled from human approach, regardless of taxa, though there were often extreme 178 differences in flight initiation distances depending on previous interactions individuals had with 179 humans. For example, black-headed gulls in urban areas fled an average flight distance of $0.59 \pm$ 180 0.71m (Feng and Liang 2020a), while large-billed crows (Corvus macrorhynchos) in Japan fled 181 at a distance of 20.5m after the population had experienced previous culling from humans 182 (Fujioka 2020). Research by van Dongen et al. (2015) discovered that black swans (Cygnus 183 *atratus*) at non-urban sites fled at more than seven times the distance from human approach than 184 swans that frequently encounter humans at urban sites (mean flight distance of 96m and 13m, 185 respectively). Most studies analyzed initial flight behavior only, though one study (Ordiz et al. 186 2019) also analyzed brown bear (Ursus arctos) movements after initial approach by humans and 187 found that bears decreased diurnal movements for three days after an initial human approach. 188 Wildlife also proactively shift natural daily or seasonal activity patterns to avoid humans 189 (see Appendix 1). Many studies in this review found that wildlife decreased diurnal and 190 increased nocturnal activity when humans were present in a system (see Appendix 1). One 191 author (Spitz et al. 2019) also found that elk more strongly responded to human hunting during 192 the day than at night. These studies suggest that wildlife likely perceive humans as a more 193 dangerous predator during diurnal compared to nocturnal hours. Seasonal changes in wildlife 194 behavior in response to humans were also observed; notably, many game species altered their

195	responses to humans depending on whether hunting season was open (Fujioka 2020; Gaynor et
196	al. 2022; Paton et al. 2017; Proudman et al. 2021). In Canada, one author found that elk were
197	more than three times as likely to be vigilant during the fall hunting season than outside of
198	hunting season (Paton et al. 2017).
199	Wildlife also decreased spatial overlap with humans by avoiding areas of human activity
200	(Mohlman et al. 2019; Ordiz et al. 2019; Santiago et al. 2020; Spitz et al. 2019), especially areas
201	with roads (Magle et al. 2014; Spitz et al. 2019). Avoiding disturbances can negatively impact
202	wildlife, especially when such avoidance alters feeding behavior (Benevides et al. 2019; Clinchy
203	et al. 2016; Lodberg-Holm et al. 2019; McGrath et al. 2018; Smith et al. 2017; Sullivan et al.
204	2018). Human presence can lead wildlife to decrease the total amount of time (Benevides et al.
205	2019; Clinchy et al. 2016; Lodberg-Holm et al. 2019; Smith et al. 2017) and frequency (Clinchy
206	et al. 2016; McGrath et al. 2018; Sullivan et al. 2018) of foraging compared to naturally-
207	observed foraging behavior. For example, Lodberg-Holm et al. (2019) found that brown bears
208	would avoid preferred food sources (bilberries) in areas with high human hunting mortality
209	during previous years. African elephants (Loxodonta africana; Wittemyer et al. 2017) and elk
210	(Spitz et al. 2019) were less likely to use human-disturbed areas, even when these areas had
211	quality resources (water and forage, respectively). Notably, wildlife can use a combination of
212	techniques to avoid humans, e.g., both spatial and temporal avoidance. For example, two
213	research groups (Jones et al. 2020; Yamaguchi et al. 2020) found that the probability of elk being
214	observed at a site after a hunting event was negatively associated with hunt duration, suggesting
215	that deer were spatially avoiding sites for certain temporal periods.
216	

217 Changes to physiology and fitness

218 This literature review identified two papers that analyzed how human-induced fear can 219 alter the physiology and fitness of wildlife. Greater tits (Parus major) were shown to have higher 220 corticosterone levels, fewer hatchlings, and poorer body condition when disturbed by researchers 221 (using human approach) compared to when they were not disturbed (Tablado et al. 2022). This 222 study also found a 94% probability that male great tits would have a shorter telomere in 223 experimentally disturbed plots compared to non-disturbed plots, suggesting that human 224 disturbance may impact stress-mediated alterations in individual genomes. Lopucki et al. (2019) 225 discovered that urban striped field mice (Apodemus agrarius) had 30% lower fecal cortisol 226 concentrations than that found in rural mice (Lopucki et al. 2019). Thus, urban mice, which had 227 more anthropogenic stressors compared to their rural counterparts, also had less physiological 228 stress than rural mice. This suggests that physiological stress reactions of wildlife to human-229 induced fear likely depend on prior experiences with humans.

230

231 Habituation to humans

232 Though the literature in this review broadly supports that wildlife are fearful of humans, a 233 handful of studies analyzing human-induced fear found that wildlife habituated to human 234 presence. Alldredge et al. (2019) discovered that aversive conditioning and relocation of pumas 235 did not appear to influence future livestock depredation. Magle et al. (2014) found that covotes 236 were more likely to occupy a site when humans visited sites at a higher rate. The propensity to be 237 fearful may depend on how long the human disturbance has been established (Moller 2010), as 238 well as several situational factors, many of which are discussed in the following section. 239 As seen in Alldredge et al. (2019), fear can be actively manipulated by wildlife practitioners to 240 reduce wildlife habituation to humans and reduce the likelihood of human-wildlife conflicts such

241	as livestock predation or crop raiding (Gaynor et al. 2020; Wilkinson et al. 2020). These efforts
242	are often utilized as non-lethal methods of wildlife control in hopes of 'keeping wildlife wild' by
243	normalizing human-induced fear and alleviating human-wildlife conflict (Alldredge et al. 2019;
244	Gaynor et al. 2020; Wilkinson et al. 2020).
245	
246	SITUATIONAL FACTORS INFLUENCING HUMAN-INDUCED FEAR
247	
248	Several species-specific and environmental factors impact how wildlife respond to
249	human-induced fear. This section highlights several key factors influencing fear responses of
250	wildlife, including life history traits, human presentation, habitat, genotype, and individual
251	variation (Fig 2).
252	
253	Species traits
254	Species functional traits, including breeding season (Carrete and Tella 2017; Cavalli et al.
255	2016; Hohmann and Woog 2021), diet (Morelli et al. 2019), body size (Gnanapragasam et al.
256	2021; Halassi et al. 2022; Morelli et al. 2019), social group size (Halassi et al. 2022; Jiang et al.
257	2020; Kiffner et al. 2014; Morelli et al. 2019; Vincze et al. 2016; Yamashita et al. 2018), and
258	intelligence (Cornell et al. 2012; Goldenberg et al. 2018; Nowak et al. 2016; Reisland et al.
259	2021) influence species-scale responses to human-induced fear. Birds with larger body sizes are
260	often quicker to flee from humans (Gnanapragasam et al. 2021; Halassi et al. 2022; Moller 2012;
261	Morelli et al. 2019). Gnanapragasam et al. (2021) believe that, since larger birds are often
262	preferred by human hunters, these species may have experienced lasting trauma from humans
262 263	preferred by human hunters, these species may have experienced lasting trauma from humans and are thus more likely to be fearful of humans.

264	Group size had variable effects on fleeing behavior; while wildebeest (Connochaetes
265	taurinus - Yamashita et al. 2018), gazelle (Eudorcas thomsoni - Kiffner et al. 2014), zebra
266	(Equus quagga - Kiffner et al. 2014), house sparrows (Passer domesticus - Vincze et al. 2016),
267	various waterbirds (Halassi et al. 2022), and several European songbirds (Morelli et al. 2019)
268	were quicker to flee from humans when in larger social groups, larger groups of Eurasian tree
269	sparrows (Passer montanus - Jiang et al. 2020) and dik-diks (Madoqua guentheri - Kiffner et al.
270	2014) were slower to flee from humans than smaller groups. Many gregarious species may use
271	sociality as an antipredator strategy (Morelli et al. 2019), which could explain why species that
272	commonly occur in larger groups were more likely to flee from humans. However, the dilution
273	effect of predation risk (i.e., larger groups of prey animals have a smaller chance that any
274	individual will be a victim to predation - Delm 1990) may lead to certain species to be less likely
275	to flee (Jiang et al. 2020; Kiffner et al. 2014). Potentially, whether larger groups are more or less
276	likely to flee from humans may be indicative of the species' evolutionary history, and if larger
277	groups are used to increase predator detection or diluting predation risk.
278	Intelligent animals like American crows (Corvus brachyrhynchos - Cornell et al. 2012),
279	Samango monkeys (Cercopithecus albogularis - Nowak et al. 2016), African elephants
280	(Goldenberg et al. 2018), and Javan gibbons (Hylobates moloch - Reisland et al. 2021) may
281	display complex, situational-based responses to human-induced fear compared to the less diverse
282	responses of less-intelligent species. For example, Cornell et al. (2012) found that, when
283	researchers wore a mask after trapping individual American crows, crows would 'scold' (i.e.,
284	produce warning calls) any person wearing the mask in future encounters, and other crows would
285	join in to 'mob' the same person, even if the mobbers themselves were never captured. In West
286	Java, groups of Javan gibbons showed extensive variability in their responses to human

disturbance, with each group studied reacting differently to human presence (Reisland et al.
2021). More intelligent species may display greater variability in their responses to humaninduced fear due to their ability to quickly adapt to novel situations, making generalizations
about impacts of human-induced fear on these species more difficult.

291

292 Human presentation

293 How humans are presented in the environment often influence fearful behaviors 294 displayed by wildlife. Both the context of human presence (e.g., proximity to roads) and 295 presentation of humans (e.g., clothing outfit, face mask) can influence fear responses. Kiffner et 296 al. (2014) found that the likelihood of several African ungulates responding to human approach 297 declined with increased distance from roads. One author found that urban birds were less fearful 298 of pedestrians when humans were in larger groups (Mikula 2014), and Lethlean et al. (2017) 299 found that Australian birds were quicker to flee from joggers compared to walking humans. 300 Sbragaglia et al. (2018) found that several reef fish species were faster to flee from humans 301 wearing spearfishing outfits than those wearing snorkeling outfits. Other authors found that some 302 coastal bird species were more likely to flee from humans in casual outfits compared to 303 fisherman outfits (Feng and Liang 2020a), and Eurasian tree sparrows were less likely to flee 304 from humans wearing a face mask (Jiang et al. 2020). Zhou and Liang (2020) suggest that 305 wildlife may be more likely to detect humans in certain situations, such as wearing brighter 306 colors, and thus might cause them to flee at a quicker rate. It appears that wildlife may be more 307 likely to respond fearfully if humans are out of the general context of an 'average' situation, such 308 as wearing clothes that are not ordinarily observed (e.g., wearing a face mask when previously 309 very few humans wore a face mask) or seeing humans away from where they are usually

observed (such as near roads). If so, this may be an indication of fear of novelty rather than thefear of the humans themselves.

312

313 Habitat

314 In general, most studies found that wildlife in urban areas were less quick to flee than 315 animals in rural areas (see Appendix 1). For example, Uchida et al. (2020) found that Eurasian 316 red squirrels (Sciurus vulgaris) in Japan displayed reduced stress responses and vertical escape 317 distances (i.e., distance fled up a tree after an approach by a human) when in urban areas 318 compared to squirrels in rural areas. This is potentially due to animals in urban areas having 319 habituated to the more frequent presence of humans, leading to less extreme reactions to human-320 induced fear by urban species. Other habitat characteristics may also be important for human-321 induced fear responses; one study by Lee et al. (2015) discovered that parrotbills from closed 322 habitats (reedbeds, forests) were more likely to vocalize than birds from open habitats. 323 Potentially, the use of habitats with lower visibility may indicate a more risk-averse individual 324 and could correlate with the strength of fear response.

325

326 *Genetic influences*

327 Certain genotypes have been associated with a species' propensity to act fearfully
328 towards humans (Reimers et al. 2012; van Dongen 2015). van Dongen (2015) found that 40% of
329 rural black swans (*Cygnus atratus*) possess a rare genotype associated with longer flight
330 initiation distances compared to only 11.2% of urban black swans possessing this genotype.
331 Similarly, Reimers et al. (2012) found that wild reindeer (*Rangifer tarandus*) descending from
332 domestic reindeer lineages decreased vigilance, alert, and flight responses compared to herds

333 from wild lineages. Schell et al. (2018) found that captive coyote pups from a breeding pair's 334 second litter had higher, heritable cortisol concentrations and were more likely to display risk-335 taking behaviors compared to siblings in the first litter, suggesting that the parent's experience 336 with humans impacted the cub's behavioral and physiological responses towards humans. Jiang 337 and Moller (2017) studied 96 bird species in Europe and found that threatened species were more 338 likely to have longer flight initiation distance than closely related, non-threatened species, again 339 suggesting the importance of heredity on human-induced fear responses. These genome-specific 340 associations of wildlife responses to human-induced fear may indicate that previous fear 341 experiences in wildlife populations can have 'legacy effects' on how future generations respond 342 to humans, potentially via changes in allele frequency of fear-associated genomes (van Dongen 343 2015; Reimers et al. 2012). Populations with genotypes associated with higher fear of humans 344 may especially be vulnerable to extinction if human-dominated areas are all that remains of their 345 occupied habitat.

346

347 Individual variability

In some cases, different species populations or individual animals may display different responses to human-induced fear. Carrete and Tella (2010) discovered that burrowing owls' flight distance in response to human approach varied greatly among individuals, but was repeatable within individuals. Ciuti et al. (2012) discovered that elk harvested during the hunting season had previously displayed bolder behavior, including increased movement and use of open areas, compared to their non-harvested counterparts.

An individual's biological sex was often found to lead to differentiation in reactions to
human-induced fear (Ciuti et al. 2012; Lee et al. 2015). Two research groups found that females

were more fearful of humans than males of the same species: Lee et al. (2015) found that female vinous-throated parrotbills (*Paradoxornis webbianus*) were more likely to produce fear screams when being handled compared to males, and Ciuti et al. (2012) found that female elk were more cautious during hunting season. Female animals are often more risk-averse (likely due to their need to raise or care for offspring – see Berger 2007) and may show greater behavioral or physiological responses to trait-mediated interactions - including human-induced fear - which can have drastic effects on population recruitment (see Berger 2007).

363

364 Cascading effects on communities and ecosystems

365

366 Studies on community- and ecosystem-scale alterations caused by wildlife responding 367 fearfully to humans were rare in this review (Fig 3). Suraci et al. (2019) found that three 368 predators (bobcat Lynx rufus, striped skunks, and Virginia opossums) decreased overall or 369 diurnal activity at human voice treatments. In response, these predators' prey (deer mice 370 Peromyscus maniculatus and wood rats Neotoma fuscipes) increased habitat use and foraging at 371 sites with the human voice treatment. Haswell et al. (2020) discovered that humans altered 372 predator activity, and specifically noted that human trail use dampens the top-down effects of 373 large carnivores (gray wolves) on mid-level predator (red foxes *Vulpes vulpes*) activity. Mols et 374 al. (2022) found that increased space use by fallow (Dama dama) and red (Cervus elaphus) deer 375 in areas without recreation or hunting also increased browsing intensity in the area, causing 376 lower sapling growth and survival in heathlands.

377 From these studies, it appears that human-induced fear in wildlife may cause changes in378 species interactions. However, there is still little research into community and ecosystem effects

of human-induced fear, likely due to challenges associated with analyzing impacts of fear across
broad spatial and temporal scales. Such broad-scale research would improve our understanding
of how human-induced fear can affect ecosystems.

382

383 Study Limitations

384

385 The purpose of this review is to provide an in-depth overview of current literature on human-induced fear in wildlife and should not be considered an exhaustive review of all 386 387 literature on this topic. Notably, any relevant literature that did not use the word "fear" to 388 describe human-induced fear in wildlife was likely excluded from our search criteria, such as 389 literature that used the key words 'risk perception', 'avoidance', or 'behaviorally-mediated 390 interactions' to describe fear-associated behaviors in wildlife. Furthermore, how human-induced 391 fear can be applied for wildlife management purposes was only discussed briefly in this paper, 392 but significant literature exists on this topic. For these reasons, these findings should be used to 393 become familiar with current human-induced fear literature, but should not be used as an 394 exhaustive list of all literature analyzing fear-like behaviors in wildlife towards humans. 395

396 Future Directions

397

Based on currently available literature, there are several aspects of human-induced fear
effects on wildlife that are still unknown or understudied. Here, we present several noteworthy
areas for future research on how human-induced fear impacts wildlife:

401 1. This review did not uncover any literature on the effects of human-induced fear on 402 several taxa, notably reptiles, amphibians, fish, and invertebrates. Herptiles and fish are 403 known to portray anti-predator behaviors like those displayed by mammals and birds, 404 including fleeing and predator avoidance behaviors (Petranka et al. 1987). Thus, these 405 taxa likely display fearful behavior towards humans as well. Herptiles, fish, and 406 invertebrates are historically understudied yet possess a large portion of endangered 407 species (IUCN 2022). Several herptiles are hunted for skins or the exotic pet trade (Cox 408 et al. 2022) and many fishes are targeted for sport or harvest, making understanding of 409 these taxa's fear responses to humans especially important to improve current 410 understanding of anthropogenic threats to these populations. 411 2. We found few studies analyzing human-induced fear in the Middle East, Central Africa, 412 and Southeast Asia. The Global South has historically been neglected for ecological 413 research (Pettorelli et al. 2021), despite holding a large portion of the global biodiversity 414 (Borthakur and Singh 2018). Improving knowledge of human impacts on wildlife in these 415 regions should be of principal importance to safeguard the Global South's abundance of 416 biodiversity against global climate change and human overconsumption. 417 3. Two studies mentioned that female animals show more fear of humans than males (Ciuti 418 et al. 2012; Lee et al. 2015), but there may be many factors that influence sex-dependent 419 responses to human-induced fear. Notably, sex may impact an individual's response to 420 human-induced fear similarly to how sexual dimorphism can impact an individual's 421 ecology (Shaffer et al. 2001). For example, male albatrosses may be more likely to persist 422 in the windier regions of the Antarctic due to male's wing's higher wind loading capacity 423 (Shaffer et al. 2001). Both the mechanism driving sex-specific differences in response to

424 human-induced fear and how these differences might impact each sex's fitness will be an
425 important consideration in future human-induced fear studies.

426 4. Though a broad literature exists on human-induced fear impacts on wildlife behavior, 427 how human-induced fear can impact physiology or genetics of individuals is less 428 understood. Physiological and genetic changes in species populations have the capacity to 429 impact species fitness (Lopucki et al. 2019; Tablado et al. 2022) and population 430 persistence (Reimers et al. 2012; van Dongen 2015), albeit in different capacities. 431 Though a few studies in this review highlighted such potential impacts (Lopucki et al. 432 2019; Tablado et al. 2022; Reimers et al. 2012; van Dongen 2015), there is still much to 433 uncover to understand how fear of humans may impact wildlife fitness or survival. We 434 suggest that future research focuses on determining a) if there is a genetic component to 435 fear that persists in various species, b) if this genetic component that impacts responses to 436 human-induced fear is shared across numerous species populations,, and c) if human-437 induced fear causes high levels of stress that could impact an individual's reproductive 438 capacity.

5. Several studies in this review highlighted how the context of human presence (such as the clothing that the human subject was wearing - Zhou and Liang 2020) can impact the strength of fearful responses of animals to humans. However, many animals react more fearfully to novel situations and contexts than to those they experience frequently (Biondi et al. 2020). Therefore, separating the fear of context of human presentation from a general fear of novelty will be important to understand the driver of human-induced fear, as well as to improve management techniques that utilize fear behaviors in wildlife.

446	6.	Only two studies in this review investigated the cascading impacts of human-induced fear
447		on wildlife communities or ecosystems. Though predators have been found to impact
448		prey resource selection (Caravantes 2020; Clinchy et al. 2016; Pringle 2018; Ripple and
449		Beschta 2004; Schmitz et al. 2004; Wang et al. 2015), human-induced fear may have
450		differing effects on prey resource selection due to the pervasiveness of humans in natural
451		habitats. For example, habituation to human presence, a phenomenon not observed from
452		prey towards natural predator-induced fear, may allow a species to lose fear behavior
453		towards humans (Alldredge et al. 2019; Magle et al. 2014; Moller 2010). What allows
454		wildlife to transition from fearful responses of humans to habituating to human presence,
455		and how fear or habituation of one species towards humans impacts its interspecific
456		relationships, will be important for understanding indirect human impacts on broader
457		ecological systems.

459 Concluding Remarks

460

461 This review supplies an overview of current knowledge of how humans incite fear in 462 free-living animals and corresponding changes to their indwelling communities and ecosystems. 463 Many findings from this literature review suggest that wildlife respond to humans similarly to 464 how they respond to their natural predators, such as fleeing from both human and predator 465 approaches. However, there were also numerous instances in which specific responses to human-466 induced fear differed from responses of wildlife to predator-induced fear (such as responding in 467 opposite ways to humans compared to predators across different habitat types - see Pringle 2018; 468 Valeix et al. 2009), indicating that wildlife may associate humans with different risks than

natural predators. In fact, several studies (including Crawford et al. 2022; Proudman et al. 2021;
Suraci et al. 2019) found that humans may elicit an even greater fear response from wildlife
compared to natural predators, making them a separate, notable, novel disturbance in
ecosystems.

Fortunately, other studies highlight how animals alter their behavior to mitigate the
effects of human-induced fear (such as using covered habitats in human-disturbed areas; Bonnot
et al. 2013; Mols et al. 2022; Nickel et al. 2020). Management techniques can be modified to
minimize the effects of human-induced fear, such as providing resources used to mitigate or
lessen human disturbance. Specifically, increasing cover availability may mitigate the effects of
human-induced fear on human-sensitive species.

479 As outdoor recreation increases in popularity and humans continue to expand their use of 480 undeveloped areas, human-induced changes in wildlife will become more prevalent. 481 Furthermore, the use of fear in wildlife management practices for decreasing human-wildlife 482 conflicts likely has significant current and future applications (Alldredge et al. 2019; Anderson et 483 al. 2022; Gaynor et al. 2020; Wilkinson et al. 2020). Specifically, inducing fear in individual 484 animals that conflict with humans via livestock depredation, crop raiding, or threat to life or 485 property will likely be a necessary non-lethal wildlife control method as human development 486 continues. Human-induced fear is only one aspect of the ecology of fear in natural systems, in 487 which numerous species interactions can lead to complex relationships between humans and 488 ecosystems (Anderson et al. 2022). Anthropogenic impacts on wildlife exist in every ecosystem 489 on earth, and most species are likely to encounter humans across some part of their range. Thus, 490 efforts to address the knowledge gaps highlighted in this review and further research on the 491 cascading effects of the fear of humans on free-living animals will advance knowledge relevant

492	to conservation. By knowing how different species react to humans, we can take steps to
493	minimize negative impacts of behavior and well-being of at-risk species (e.g., avoiding areas
494	where at-risk species are feeding or nesting, or limiting human activity in certain areas or times
495	of day/seasons to reduce disturbance). Furthermore, human-induced fear likely has applications
496	for wildlife managers aiming to manipulate fear dynamics to control wildlife behavioral
497	responses to human presence. Fear of human activities can impact wildlife interactions and
498	ecological relationships, and studying this phenomenon will provide a deeper understanding of
499	the role species play in the overall health and functioning of an ecosystem.
500	
501	Acknowledgements
502	
503	We thank R. Kimball for her insights and for her review of this article.

REFERENCES

507	Abrams, P. A. 1995. Implications of dynamically variable traits for identifying, classifying and
508	measuring direct and indirect effects in ecological communities. American Naturalist
509	146: 112–134.
510	Al-Naimi OAS, Delvalle JR, Carryl SS, Rodriguez NA, Aliou F, Cambi M, Bamshad M. 2018.
511	Socio-Ecological Disruptions at Critical Periods During Development Alter Stress
512	Responses and Hippocampal Dendritic Morphology of Prairie Voles: Implications for
513	Social Monogamy. Frontiers in Ecology and Evolution 6.
514	Alldredge MW, Buderman FE, Blecha KA. 2019. Human-Cougar interactions in the wildland-
515	urban interface of Colorado's front range. Ecology and Evolution 9(18):10415-10431.
516	Andersen R, Linnell JDC, Langvatn R. 1996. Short term behavioural and physiological response
517	of moose Alces alces to military disturbance in Norway. Biological Conservation
518	77(44595):169-176.
519	Benevides LJ, Cardozo-Ferreira GC, Ferreira CEL, Pereira PHC, Pinto TK, Sampaio CLS. 2019.
520	Fear-induced behavioural modifications in damselfishes can be diver-triggered. Journal
521	of Experimental Marine Biology and Ecology 514:34-40.
522	Berger, J., 2007. Fear, human shields and the redistribution of prey and predators in protected
523	areas. Biology letters, 3(6), pp.620-623.
524	Biondi, L.M., Fuentes, G.M., Córdoba, R.S., Bó, M.S., Cavalli, M., Paterlini, C.A., Castano,
525	M.V. and García, G.O., 2020. Variation in boldness and novelty response between rural
526	and urban predatory birds: The Chimango Caracara, Milvago chimango as study case.
527	Behavioural processes, 173, p.104064.

- Bjorvik LM, Dale S, Hermansen GH, Munishi PKT, Moe SR. 2015. Bird flight initiation
 distances in relation to distance from human settlements in a Tanzanian floodplain
 habitat. Journal of Ornithology 156(1):239-246.
- Blumstein DT. 2019. What chasing birds can teach us about predation risk effects: past insights
 and future directions. Journal of Ornithology 160(2):587-592.
- Bolker, B., Holyoak, M., Křivan, V., Rowe, L. and Schmitz, O., 2003. Connecting theoretical
 and empirical studies of trait-mediated interactions. Ecology, 84(5), pp.1101-1114.
- 535 Bonnot N, Couriot O, Berger A, Cagnacci F, Ciuti S, De Groeve J, Gehr B, Heurich M,
- 536 Kjellander P, Kroschel M, Morellet N, Sonnichsen L, Hewison AJM. 2020. Fear of the
- 537 dark? Contrasting impacts of humans versus lynx on diel activity of roe deer across
 538 EuropeMots-cles. Journal of Animal Ecology 89(1):132-145.
- Bonnot N, Morellet N, Verheyden H, Cargnelutti B, Lourtet B, Klein F, Hewison AJM. 2013.
- 540 Habitat use under predation risk: hunting, roads and human dwellings influence the
- 541 spatial behaviour of roe deer. European Journal of Wildlife Research 59(2):185-193.
- 542 Borthakur, A. and Singh, P., 2018. Global research trends in 'Ecology': A scientometric analysis.
 543 Trop. Ecol, 59, pp.431-443.
- 544 Broekhuis F, Cozzi G, Valeix M, McNutt JW, Macdonald DW. 2013. Risk avoidance in

545 sympatric large carnivores: reactive or predictive?. Journal of Animal Ecology546 82(5):1097-1105.

- 547 Carrete M, Tella JL. 2017. Behavioral Correlations Associated with Fear of Humans Differ
- 548 between Rural and Urban Burrowing Owls. Frontiers in Ecology and Evolution 5.
- 549 Carrete M, Tella JL. 2010. individual consistency in flight initiation distances in burrowing owls:
- a new hypothesis on disturbance-induced habitat selection. Biology Letters 6(2):167-170.

551	Carricondo-Sanchez D, Zimmermann B, Wabakken P, Eriksen A, Milleret C, Ordiz A, Sanz-
552	Perez A, Wikenros C. 2020. Wolves at the door? Factors influencing the individual
553	behavior of wolves in relation to anthropogenic features. Biological Conservation 244.
554	Cavalli M, Isacch JP, Baladron AV, Biondi LM, Bo MS. 2016. Differing nest-defence behaviour
555	in urban and rural populations of breeding Burrowing Owls. Emu-Austral Ornithology
556	116(4):428-434.
557	Charutha K, Roshnath R, Sinu PA. 2021. Urban heronry birds tolerate human presence more
558	than its conspecific rural birds. Journal of Natural History 55(44814):561-570.
559	Chassagneux A, Calenge C, Siat V, Mortz P, Baubet E, Said S. 2019. Proximity to the risk and
560	landscape features modulate female red deer movement patterns over several days after
561	drive hunts. Wildlife Biology .
562	Ciuti S, Muhly TB, Paton DG, McDevitt AD, Musiani M, Boyce MS. 2012. Human selection of
563	elk behavioural traits in a landscape of fear. Proceedings of The Royal Society B-
564	Biological Sciences 279(1746):4407-4416.
565	Clinchy M, Zanette LY, Roberts D, Suraci JP, Buesching CD, Newman C, Macdonald DW.
566	2016. Fear of the human super predator far exceeds the fear of large carnivores in a
567	model mesocarnivore. Behavioral Ecology 27(6):1826-1832.
568	Clinchy, M., Sheriff, M.J. and Zanette, L.Y., 2013. Predator-induced stress and the ecology of
569	fear. Functional Ecology, 27(1), pp.56-65.
570	Cook MO, Weaver MJ, Hutton P, McGraw KJ. 2017. The effects of urbanization and human
571	disturbance on problem solving in juvenile house finches (Haemorhous mexicanus).
572	Behavioral Ecology and Sociobiology 71(5).

573	Cornell HN, Marzluff JM, Pecoraro S. 2012. Social learning spreads knowledge about dangerous
574	humans among American crows. Proceedings of The Royal Society B-Biological
575	Sciences 279(1728):499-508.
576	Cox, N., Young, B.E., Bowles, P., Fernandez, M., Marin, J., Rapacciuolo, G., Böhm, M.,
577	Brooks, T.M., Hedges, S.B., Hilton-Taylor, C. and Hoffmann, M., 2022. A global reptile
578	assessment highlights shared conservation needs of tetrapods. Nature, 605(7909), pp.285-
579	290.
580	Crawford DA, Conner LM, Clinchy M, Zanette LY, Cherry MJ. 2022. Prey tells, large
581	herbivores fear the human 'super predator'. Oecologia 198(1):91-98.
582	Delm, M.M., 1990. Vigilance for predators: detection and dilution effects. Behavioral Ecology
583	and Sociobiology, 26(5), pp.337-342.
584	Doherty JF, Ruehle B. 2020. An integrated Landscape of Fear and Disgust: The Evolution of
585	Avoidance Behaviors Amidst a Myriad of Natural Enemies. Frontiers in Ecology and
586	Evolution 8.
587	Eklund A, Johansson M, Flykt A, andren H, Frank J. 2020. Drivers of intervention use to protect
588	domestic animals from large carnivore attacks. Human Dimensions of Wildlife
589	25(4):339-354.
590	Feng CZ, Liang W. 2020. Behavioral responses of black-headed gulls (Chroicocephalus
591	ridibundus) to artificial provisioning in China. Global Ecology and Conservation 21.

592 Feng CZ, Liang W. 2020. Living together: Waterbirds distinguish between local fishermen and
593 casual outfits. Global Ecology and Conservation 22.

594	Feyten LEA, Demers EEEM, Ramnarine IW, Chivers DP, Ferrari MCO, Brown GE. 2019.
595	Who's where? Ecological uncertainty shapes neophobic predator avoidance in
596	Trinidadian guppies. Behavioral Ecology and Sociobiology 73(5).
597	Fujioka M. 2020. Alert and flight initiation distances of crows in relation to the culling method,
598	shooting or trapping. Ornithological Science 19(2):125-134.
599	Gaynor KM, Mcinturff A, Brashares JS. 2022. Contrasting patterns of risk from human and non-
600	human predators shape temporal activity of prey. Journal of Animal Ecology 91(1):46-
601	60.
602	Gaynor KM, Cherry MJ, Gilbert SL, Kohl MT, Larson CL, Newsome TM, Prugh LR, Suraci JP,
603	Young JK, and Smith JA. 2020. An applied ecology of fear framework: Linking theory to
604	conservation practice. Animal Conservation acv.12629.
605	https://doi.org/10.1111/acv.12629
606	Gaynor KM, Brown JS, Middleton AD, Power ME, and Brashares JS, 2019. Landscapes of fear:
607	spatial patterns of risk perception and response. Trends in Ecology and Evolution
608	34(4):355-368.
609	Gaynor KM, Branco PS, Long RA, Goncalves DD, Granli PK, Poole JH. 2018a. Effects of
610	human settlement and roads on diel activity patterns of elephants (Loxodonta africana).
611	African Journal of Ecology 56(4):872-881.
612	Gaynor KM, Hojnowski CE, Carter NH, and Brashares JS. 2018b. The influence of human
613	disturbance on wildlife nocturnality. Science, 360(6394):1232-1235.
614	Gnanapragasam JJ, Ekanayake KB, Ranawana K, Symonds MRE, Weston MA. 2021. Civil War

- 615 Is Associated with Longer Escape Distances among Sri Lankan Birds. American
- 616 Naturalist 198(5):653-659.

617	Goldenberg SZ, Douglas-Hamilton I, Wittemyer G. 2018. inter-generational change in African
618	elephant range use is associated with poaching risk, primary productivity and adult
619	mortality. Proceedings of The Royal Society B-Biological Sciences 285(1879).
620	Guay PJ, Mcleod EM, Cross R, Formby AJ, Maldonado SP, Stafford-Bell RE, St-James-Turner
621	ZN, Robinson RW, Mulder RA, Weston MA. 2013. Observer effects occur when
622	estimating alert but not flight-initiation distances. Wildlife Research 40(4):289-293.
623	Halassi I, Elafri A, Boutabia L, Telailia S. Monitoring human disturbance: Factors affecting
624	escape behaviour of waterbirds in North African wetlands. African Journal of Ecology.
625	Hall MJ, Burns AL, Martin JM, Hochuli DF. 2020. Flight initiation distance changes across
626	landscapes and habitats in a successful urban coloniser. Urban Ecosystems 23(4):785-
627	791.
628	Haswell PM, Kusak J, Jones KA, Hayward MW. 2020. Fear of the dark? A mesopredator
629	mitigates large carnivore risk through nocturnality, but humans moderate the interaction.
630	Behavioral Ecology and Sociobiology 74(5).
631	Hayward MW, Ortmann S, Kowalczyk R. 2015. Risk perception by endangered European bison
632	Bison bonasus is context (condition) dependent. Landscape Ecology 30(10):2079-2093.
633	Hohmann R, Woog F. 2021. Comparing behavioural responses of Greylag Geese Anser anser
634	and Egyptian Geese Alopochen aegyptiaca to human disturbance in an urban setting.
635	Wildfowl 71:244-261.
636	IUCN. 2022. The IUCN Red List of Threatened Species. Version 2022-1.
637	https://www.iucnredlist.org. Accessed on 22 November 2022.
638	Jarjour C, Evans JC, Routh M, Morand-Ferron J. 2020. Does city life reduce neophobia? A study
639	on wild black-capped chickadees. Behavioral Ecology 31(1):123-131.

- Jiang XY, Liu JP, Zhang CJ, Liang W. 2020. Face masks matter: Eurasian tree sparrows show
 reduced fear responses to people wearing face masks during the COVID-19 pandemic.
 Global Ecology and Conservation 24.
- Jiang YT, Moller AP. 2017. Antipredator escape distances of common and threatened birds.
 Behavioral Ecology 28(6):1498-1503.
- Jones JD, Proffitt KM, Paterson JT, Almberg ES, Cunningham JA, Loveless KM. 2021. Elk
 Responses to Management Hunting and Hazing. Journal of Wildlife Management
 85(8):1721-1738.
- 648 Kays R, Parsons AW, Baker MC, Kalies EL, Forrester T, Costello R, Rota CT, Millspaugh JJ,
- 649 McShea WJ. 2017. Does hunting or hiking affect wildlife communities in protected
 650 areas?. Journal of Applied Ecology 54(1):242-252.
- 651 Kiffner C, Kioko J, Kissui B, Painter C, Serota M, White C, Yager P. 2014. interspecific
- variation in large mammal responses to human observers along a conservation gradient
 with variable hunting pressure. Animal Conservation 17(6):603-612.
- 654 Kuijper DPJ, Bubnicki JW, Churski M, Mols B, van Hooft P. 2015. Context dependence of risk
- effects: wolves and tree logs create patches of fear in an old-growth forest. Behavioral
 Ecology 26(6):1558-1568.
- Lee JW, Lee JY, Noh HJ, Kim MS, Kim KH, Yoo JC. 2015. Habitats matter: the incidence ofand response to fear screams in a habitat generalist, the vinous-throated parrotbill
- 659 Paradoxornis webbianus. Behavioral Ecology and Sociobiology 69(10):1575-1584.
- 660 Lethlean H, Van Dongen WFD, Kostoglou K, Guay PJ, Weston MA. 2017. Joggers cause greater
- avian disturbance than walkers. Landscape and Urban Planning 159:42-47.

- Lindshield S, Danielson BJ, Rothman JM, Pruetz JD. 2017. Feeding in fear? How adult male
 western chimpanzees (Pan troglodytes verus) adjust to predation and savanna habitat
 pressures. American Journal of Physical Anthropology 163(3):480-496.
- Linley GD, Guay PJ, Weston MA. 2019. Are disturbance separation distances derived from
 single species applicable to mixed-species shorebird flocks?. Wildlife Research
 46(8):719-723.
- Literak I, Polaskova J, Literakova M. 2012. Aggressive coyote behavior toward a human being at
 Volcan Barva, Costa Rica. Revista Mexicana De Biodiversidad 83(1):301-304.

670 Lodberg-Holm HK, Gelink HW, Hertel AG, Swenson E, Domevscik M, Steyaert SMJG. 2019. A

- human-induced landscape of fear influences foraging behavior of brown bears. Basic andApplied Ecology 35:18-27.
- 673 Lone K, Loe LE, Gobakken T, Linnell JDC, Odden J, Remmen J, Mysterud A. 2014. Living and
- dying in a multi-predator landscape of fear: roe deer are squeezed by contrasting pattern
 of predation risk imposed by lynx and humans. Oikos 123(6):641-651.
- 676 Lopucki R, Klich D, Scibior A, Galebiowska D. 2019. Hormonal adjustments to urban
- 677 conditions: stress hormone levels in urban and rural populations of Apodemus agrarius.
- 678 Urban Ecosystems 22(3):435-442.
- Magle SB, Simoni LS, Lehrer EW, Brown JS. 2014. Urban predator-prey association: coyote and
 deer distributions in the Chicago metropolitan area. Urban Ecosystems 17(4):875-891.
- 681 May R, Jackson C, Bevanger K, Roskaft E. 2019. Servicescape of the Greater Serengeti-Mara
- Ecosystem: Visualizing the linkages between land use, biodiversity and the delivery of
- 683 wildlife-related ecosystem services. Ecosystem Services 40.

- McGrath DJ, Terhune TM, Martin JA. 2018. Northern bobwhite foraging response to hunting.
 Journal of Wildlife Management 82(5):966-976.
- 686 Mendes CP, Carreira D, Pedrosa F, Beca G, Lautenschlager L, Akkawi P, Berce W, Ferraz
- 687 KMPMB, Galetti M. 2020. Landscape of human fear in Neotropical rainforest mammals.
 688 Biological Conservation 241.
- Mettke-Hofmann C, Eccles GR, Greggor AL, Bethell EJ. 2020. Cognition in a Changing World:
 Red-Headed Gouldian Finches Enter Spatially Unfamiliar Habitats More Readily Than

691Do Black-Headed Birds. Frontiers in Ecology and Evolution 8.

- Mikula P. 2014. Pedestrian density influences flight distances of urban birds. Ardea 102(1):53693 60.
- Miller JRB, Jhala YV, Jena J, Schmitz OJ. 2015. Landscape-scale accessibility of livestock to
 tigers: implications of spatial grain for modeling predation risk to mitigate human carnivore conflict. Ecology and Evolution 5(6):1354-1367.
- 697 Minnie L, Boshoff AF, Kerley GIH. 2015. Vegetation type influences livestock predation by
- leopards: Implications for conservation in agro-ecosystems. African Journal of Wildlife
 Research 45(2):204-214.
- Mohlman JL, Gardner RR, Parnell IB, Wilhite NG, Martin JA. 2019. Nonconsumptive effects of
 hunting on a nontarget game bird. Ecology and Evolution 9(16):9324-9333.
- Moll RJ, Cepek JD, Lorch PD, Dennis PM, Robison T, Millspaugh JJ, Montgomery RA. 2018.
- Humans and urban development mediate the sympatry of competing carnivores. Urban
 Ecosystems 21(4):765-778.
- Moller AP. 2012. Urban areas as refuges from predators and flight distance of prey. Behavioral
 Ecology 23(5):1030-1035.

Moller AP. 2010. interspecific variation in fear responses predicts urbanization in birds.
Behavioral Ecology 21(2):365-371.

709	Mols B, Lambers E, Cromsigt JPGM, Kuijper DPJ, Smit C. 2022. Recreation and hunting
710	differentially affect deer behaviour and sapling performance. Oikos 2022(1).
711	Moraes RN, Laske TG, Leimgruber P, Stabach JA, Marinari PE, Horning MM, Laske NR,
712	Rodriguez JV, Eye GN, Kordell JE, Gonzalez M, Eyring T, Lemons C, Helmick KE,
713	Delaski KM, Ware LH, Jones JC, Songsasen N. 2021. inside out: heart rate monitoring to
714	advance the welfare and conservation of maned wolves (Chrysocyon brachyurus).
715	Conservation Physiology 9.
716	Morelli F, Benedetti Y, Diaz M, Grim T, Ibanez-Alamo JD, Jokimaki J, Kaisanlahti-Jokimaki
717	ML, Tatte K, Marko G, Jiang YT, Tryjanowski P, Moller AP. 2019. Contagious fear:
718	Escape behavior increases with flock size in European gregarious birds. Ecology and
719	Evolution 9(10):6096-6104.
720	Moroni E, Crivelaro AZ, Soares TL, Guillermo-Ferreira R. 2017. increased behavioural
721	responses to human disturbance in breeding Burrowing Owls Athene cunicularia. Ibis
722	159(4):854-859.
723	Nassauer JI, Raskin J. 2014. Urban vacancy and land use legacies: A frontier for urban
724	ecological research, design, and planning. Landscape and Urban Planning 125:245-253.
725	Nicholson GJ, Evans SM. 1997. Anthropogenic impacts on the stocks of the common whelk
726	Buccinum undatum (L). Marine Environmental Research 44(3):305-314.
727	Nickel BA, Suraci JP, Allen ML, Wilmers CC. 2020. Human presence and human footprint have

728 non-equivalent effects on wildlife spatiotemporal habitat use. Biological Conservation

729 241.

730	Norum JK, Lone K, Linnell JDC, Odden J, Loe LE, Mysterud A. 2015. Landscape of risk to roe			
731	deer imposed by lynx and different human hunting tactics. European Journal of Wildlife			
732	Research 61(6):831-840.			
733	Nowak K, Hill RA, Wimberger K, le Roux A. 2016. Risk-Taking in Samango Monkeys in			
734	Relation to Humans at Two Sites in South Africa. Ethnoprimatology: Primate			
735	Conservation in The 21St Century :301-314.			
736	Ordiz A, Moen GK, Saebo S, Stenset N, Swenson JE, Stoen OG. 2019. Habituation,			
737	sensitization, or consistent behavioral responses? Brown bear responses after repeated			
738	approaches by humans on foot. Biological Conservation 232:228-237.			
739	Paton DG, Ciuti S, Quinn M, Boyce MS. 2017. Hunting exacerbates the response to human			
740	disturbance in large herbivores while migrating through a road network. Ecosphere 8(6).			
741	Pedersen S, Angelstam P, Ferguson MAD, Wabakken P, Storaas T. 2019. Impacts of wolves on			
742	rural economies from recreational small game hunting. European Journal of Wildlife			
743	Research 65(6).			
744	Pettorelli, N., Barlow, J., Nuñez, M.A., Rader, R., Stephens, P.A., Pinfield, T. and Newton, E.,			
745	2021. How international journals can support ecology from the Global South. Journal of			
746	Applied Ecology, 58(1), pp.4-8.			
747	Petranka, J.W., Kats, L.B. and Sih, A., 1987. Predator-prey interactions among fish and larval			
748	amphibians: use of chemical cues to detect predatory fish. Animal Behaviour, 35(2),			
749	pp.420-425.			
750	Pluym JLV, Eggleston DB, Levine JF. 2008. Impacts of Road Crossings on Fish Movement and			
751	Community Structure. Journal of Freshwater Ecology 23(4):565-574.			

- Proudman NJ, Churski M, Bubnicki JW, Nilsson JA, Kuijper DPJ. 2021. Red deer allocate
 vigilance differently in response to spatio-temporal patterns of risk from human hunters
 and wolves. Wildlife Research 48(2):163-174.
- 755 Rego KMD, Zeppelini CG, Alves RRN. 2015. Assessing human-bat interactions around a

protected area in northeastern Brazil. Journal of Ethnobiology and Ethnomedicine 11.

- Reimers E, Roed KH, Colman JE. 2012. Persistence of vigilance and flight response behaviour
 in wild reindeer with varying domestic ancestry. Journal of Evolutionary Biology
 25(8):1543-1554.
- Reisland MA, Malone N, Lambert JE. 2021. Endangered Apes-Can Their Behaviors Be Used to
 index Fear and Disturbance in Anthropogenic Landscapes?. Diversity-Basel 13(12).
- Rosner S, Mussard-Forster E, Lorenc T, Muller J. 2014. Recreation shapes a landscape of fear
 for a threatened forest bird species in Central Europe. Landscape Ecology 29(1):55-66.
- 764 Samia DSM, Blumstein DT, Diaz M, Grim T, Ibanez-Alamo JD, Jokimaki J, Tatte K, Marko G,
- 765 Tryjanowski P, Moller AP. 2017. Rural-Urban Differences in Escape Behavior of
- For European Birds across a Latitudinal Gradient. Frontiers in Ecology and Evolution 5.
- 767 Santiago SC, Dias PAD, Garau S, Fuentes AC, Ramirez DRC, Espinosa DC, Negrin AR. 2020.
- Behavioral and physiological stress responses to local spatial disturbance and human
 activities by howler monkeys at Los Tuxtlas, Mexico. Animal Conservation 23(3):297306.
- Sbragaglia V, Morroni L, Bramanti L, Weitzmann B, Arlinghaus R, Azzurro E. 2018.
- 772 Spearfishing modulates flight initiation distance of fishes: the effects of protection,
- individual size, and bearing a speargun. Ices Journal of Marine Science 75(5):1779-1789.

774	Schell CJ, Young JK, Lonsdorf EV, Santymire RM, Mateo JM. 2018. Parental habituation to			
775	human disturbance over time reduces fear of humans in coyote offspring. Ecology and			
776	Evolution 8(24):12965-12980.			
777	Shaffer SA, Weimerskirch H, and Costa DP. 2001. Functional significance of sexual dimorphism			
778	in wandering albatrosses, Diomedea exulans. Functional Ecology 15(2):203-210.			
779	9 Sheaves M. 2016. Simple processes drive unpredictable differences in estuarine fish			
780	assemblages: Baselines for understanding site-specific ecological and anthropogenic			
781	impacts. Estuarine Coastal and Shelf Science 170:61-69.			
782	2 Sjolander-Lindqvist A, Johansson M, Sandstrom C. 2015. individual and collective responses to			
783	large carnivore management: the roles of trust, representation, knowledge spheres,			
784	communication and leadership. Wildlife Biology 21(3):175-185.			
785	5 Smith JA, Suraci JP, Clinchy M, Crawford A, Roberts D, Zanette LY, Wilmers CC. 2017. Fear			
786	of the human 'super predator' reduces feeding time in large carnivores. Proceedings of			
787	The Royal Society B-Biological Sciences 284(1857).			
788	Smith JA, Wang YW, Wilmers CC. 2015. Top carnivores increase their kill rates on prey as a			
789	response to human-induced fear. Proceedings of The Royal Society B-Biological			
790	Sciences 282(1802).			
791	Solaro C, Sarasola JH. 2015. Nest-spacing, not human presence, influences the breeding of			
792	Chimango Caracaras (Milvago chimango) in a peri-urban reserve. Emu-Austral			
793	Ornithology 115(1):72-75.			
794	Spitz DB, Rowland MM, Clark DA, Wisdom MJ, Smith JB, Brown CL, Levi T. 2019.			
795	Behavioral changes and nutritional consequences to elk (Cervus canadensis) avoiding			
796	perceived risk from human hunters. Ecosphere 10(9).			

797	Sreekar R, Goodale E, Harrison RD. 2015. Flight initiation distance as behavioral indicator of			
798	hunting pressure: a case study of the Sooty-headed Bulbul (Pycnonotus aurigaster) in			
799	Xishuangbanna, SW China. Tropical Conservation Science 8(2):505-512.			
800	Stewart FEC, Heim NA, Clevenger AP, Paczkowski J, Volpe JP, Fisher JT. 2016. Wolverine			
801	behavior varies spatially with anthropogenic footprint: implications for conservation and			
802	inferences about declines. Ecology and Evolution 6(5):1493-1503.			
803	3 Stillfried M, Gras P, Borner K, Goritz F, Painer J, Rollig K, Wenzler M, Hofer H, Ortmann S,			
804	Kramer-Schadt S. 2017. Secrets of Success in a Landscape of Fear: Urban Wild Boar			
805	Adjust Risk Perception and Tolerate Disturbance. Frontiers in Ecology and Evolution 5.			
806	6 Sullivan JD, Ditchkoff SS, Collier BA, Ruth CR, Raglin JB. 2018. Recognizing the danger zone			
807	response of female white-tailed to discrete hunting events. Wildlife Biology.			
808	Suraci JP, Clinchy M, Zanette LY, Wilmers CC. 2019. Fear of humans as apex predators has			
809	landscape-scale impacts from mountain lions to mice. Ecology Letters 22(10):1578-1586.			
810	Suraci JP, Frank LG, Oriol-Cotterill A, Ekwanga S, Williams TM, Wilmers CC. 2019. Behavior-			
811	specific habitat selection by African lions may promote their persistence in a human-			
812	dominated landscape. Ecology 100(4).			
813	Symons J, Pirotta E, Lusseau D. 2014. Sex differences in risk perception in deep-diving			
814	bottlenose dolphins leads to decreased foraging efficiency when exposed to human			
815	disturbance. Journal of Applied Ecology 51(6):1584-1592.			
816	Tablado Z, Botsch Y, Powolny T, Massemin S, Zahn S, Jenni-Eiermann S, Jenni L. 2022. Effect			
817	of Human Disturbance on Bird Telomere Length: An Experimental Approach. Frontiers			
818	in Ecology and Evolution 9.			

- Tadesse SA, Kotler BP. 2014. Effects of habitat, group-size, sex-age class and seasonal variation
 on the behavioural responses of the mountain nyala (Tragelaphus buxtoni) in Munessa,
 Ethiopia. Journal of Tropical Ecology 30:33-43.
- 822 Tarakini T, Mabika I, Dakwa F, Mundy P, Fritz H. 2020. Terrestrial threats dominate the

823 waterbird landscape of fear in a savannah pan wetland system. Wildlife Biology 2020(2).

- Thompson JJ, Marti CM, Quigley H. 2020. Anthropogenic factors disproportionately affect the
- 825 occurrence and potential population connectivity of the Neotropic's apex predator: The

jaguar at the southwestern extent of its distribution. Global Ecology and Conservation 24.

- 827 Tryjanowski P, Kosicki JZ, Hromada M, Mikula P. 2020. The emergence of tolerance of human
 828 disturbance in Neotropical birds. Journal of Tropical Ecology 36(1):1-5.
- Uchida K, Shimamoto T, Yanagawa H, Koizumi I. 2020. Comparison of multiple behavioral
 traits between urban and rural squirrels. Urban Ecosystems 23(4):745-754.
- 831 Valeix M, Hemson G, Loveridge AJ, Mills G, Macdonald DW. 2012. Behavioural adjustments
- of a large carnivore to access secondary prey in a human-dominated landscape. Journal ofApplied Ecology 49(1):73-81.
- 834 Van Dongen WFD, Robinson RW, Weston MA, Mulder RA, Guay PJ. 2015. Variation at the

BRD4 locus is associated with wariness and local site selection in urban black swans.Bmc Evolutionary Biology 15.

- Van Donselaar JL, Atma JL, Kruyf ZA, LaCroix HN, Proppe DS. 2018. Urbanization alters fear
 behavior in black-capped chickadees. Urban Ecosystems 21(6):1043-1051.
- 839 Vincze E, Papp S, Preiszner B, Seress G, Bokony V, Liker A. 2016. Habituation to human
- 840 disturbance is faster in urban than rural house sparrows. Behavioral Ecology 27(5):1304-
- 841 1313.

- 842 Wheat RE, Wilmers CC. 2016. Habituation reverses fear-based ecological effects in brown bears
 843 (Ursus arctos). Ecosphere 7(7).
- 844 Whytock RC, Fuentes-Montemayor E, Watts K, Macgregor NA, Call E, Mann JA, Park KJ.
- 845 2020. Regional land-use and local management create scale-dependent 'landscapes of

846 fear' for a common woodland bird. Landscape Ecology 35(3):607-620.

- 847 Wilkinson CE, McInturff A, Miller JRB, Yovovich V, Gaynor KM, Calhoun K, Karandikar H,
- 848 Martin JV, Parker-Shames P, Shawler A, Van Scoyoc A, and Brashares JS. 2020. An
- 849 ecological framework for contextualizing carnivore-livestock conflict. Conservation

850 Biology cobi.13469. <u>https://doi.org/10.1111/cobi.13469</u>

- 851 Wittemyer G, Keating LM, Vollrath F, Douglas-Hamilton I. 2017. Graph theory illustrates
- spatial and temporal features that structure elephant rest locations and reflect riskperception. Ecography 40(5):598-605.
- Yamaguchi S, Takeshita KM, Tanikawa K, Kaji K. 2020. Relationship Between Hunting Time
 Schedule and Sika Deer Spatial Displacement in Hunting with and Without Driving.
 Wildlife Society Bulletin 44(4):724-731.
- 857 Yamashita T, Gaynor KM, Kioko J, Brashares J, Kiffner C. 2018. Antipredator behaviour of
- African ungulates around human settlements. African Journal of Ecology 56(3):528-536.
- Zeller KA, Wattles DW, Conlee L, DeStefano S. 2019. Black bears alter movements in response
- to anthropogenic features with time of day and season. Movement Ecology 7.
- 861 Zhou B, Liang W. 2020. Avian escape responses to observers wearing clothing of different
- 862 colors: A comparison of urban and rural populations. Global Ecology and Conservation
- 863

22.

865 TABLES

867	Table 1.	Variables	collected	for each	paper in	this review.
00.		, and the set	001100100	IOI Cucii	paper m	

Variable Name	Description	Possible Values
Study Type	Whether the study was experimental (i.e., had a treatment) or observational (no manipulation).	Observational, experimental
Study Date(s)	Year(s) during which the study took place.	Year (2001, 1987, etc.)
Country	The governmental entity that presides over the territory in which the study was conducted.	Any of the 195 countries currently (or previously) in existence. Example: Canada
Species	Common and scientific name of each species studied. If multiple species were studied, they were separated by a semicolon.	Example: red fox (Vulpes vulpes)
Trophic Level	The trophic level of the species of interest for the study.	Carnivore, omnivore, herbivore, multiple
Animal Group	The general group of animals in which the species of interest belongs.	Mammal, reptile, amphibian, bird, fish, invertebrate, multiple
Habitat (Landsat)	Land cover classification of the study area based on Landsat satellite imagery classification scheme (Landsat 8) and categorized into one of five categories: human-dominated (urban, suburban, semiurban, or developed open space habitats), woody plant-dominated (temperate, boreal, and tropical forests, as well as woodlands), grass-dominated (savanna, grassland, and montane habitats), agriculture (pastures for livestock or croplands), or aquatic (wetland, marine, coastal, and freshwater habitats)	freshwater, marine, PerennialIce/Snow, coastal, wetland, urban, suburban/semiurban, OpenSpace(developed), barren/arid, montane, rocky, Temperate Forest, Tropical Forest, Boreal Forest, shrub/woodland, savanna/grassland, pasture/crops, other/multiple(notes) Overall categories (see left): human- dominated, woody plant-dominated, grass-dominated, agriculture, or aquatic

Human Impact (independent var)	The human-related variable or condition that induced fear in wildlife (must be based on human presence, not infrastructure).	The types of human impacts found in the studies included in this review were: Human presence/activity (not approaching animal but humans doing other activities nearby, such as walking on a path, can also be experimental presence such as walking around study area) Human approach (direct approach by a human) Hunting (lethal contact with a human) Trapping/handling (often for research purposes) Simulated presence (such as human voice playbacks to simulate human presence) Aversive conditioning (purposefully causing fear in wildlife, such as 'hazing')
Type of Response 1	The type of response exhibited by the species of interest in this study in response to human-induced fear.	Behavioral (movement, activity, foraging, occupancy), vital rates (physiological, reproductive, survival, population size)
Scale of Response 1	The ecological scale (species, community, or ecosystem) at which the effects of human-induced fear were observed.	Individual/population (telemetry, vocals, stress, mating, survival, foraging, occupancy, abundance, density), community (interactions, predation), ecosystem (nutrients, vegetation)
Type of Response 2	A secondary type of response, if multiple types of responses were observed in the study.	Behavioral (movement, Direct Response, activity), vital rates (physiological, reproductive, survival)
Scale of Response 2	A secondary scale of response, if multiple scale of responses were observed in the study.	Individual/population (telemetry, vocals, stress, mating, survival, foraging, occupancy, abundance, density), community (interactions, predation), ecosystem (nutrients, vegetation)

	Sig Response?	Binary indicator of whether or not there was a significant response of species to human-induced fear.	1,0
	Response Specifics	Specific results about the species response to human-induced fear.	N/A
	Notes	Any notes recorded by the data collector.	N/A
868			
869			
870			
871			
872			
873			
874			
875			

876 FIGURE CAPTIONS

Figure 1. Summary statistics of published articles in this review. (a) Number of articles about human-induced fear published by year. (b) Number of articles on human-induced fear by country, with countries shaded a darker color having produced more articles. (c) Number of studies conducted for each habitat category. See Materials and Methods for the habitat category descriptions. (d) Stacked bar chart in which the number of articles by type of human impact (human approach, presence/activity, hunting, simulated, other) are stacked for each taxonomic group (birds, fish, mammals). In other words, the number of articles per animal group across human disturbance types.

Figure 2. There are several factors that can influence how wildlife respond to human-induced
fear, including (starting at the top and moving clockwise) life history traits of the species, how
humans were presented in the interaction (human presentation), the habitat in which the behavior
is observed, variation among individual responses to humans, and genotypic variation within the
species.

Figure 3. Observed disruptions of trophic interactions by human-induced fear in the literature.
Human-induced fear has caused disruptions in relationships between predators and prey (Suraci
et al. 2019), between apex and mid-level predators (Haswell et al. 2020), and between consumers
and primary producers (Mols et al. 2022). Interactions between species that are intensified by
human presence are indicated by a solid green line, and dampened interactions between species
due to human presence are indicated by a dotted orange line.

906 APPENDICES

907

908 Appendix 1. Literature summary table for findings of the reviewed sources. *

Major Theme	Authors
Wildlife proactively shift natural daily or seasonal activity patterns to avoid humans.	Bonnot et al. 2013; Bonnot et al. 2020; Gaynor et al. 2022; Gaynor et al. 2018b; Mohlman et al. 2019; Moll et al. 2018; Nickel et al. 2020; Ordiz et al. 2019; Santiago et al. 2020; Spitz et al. 2019; Sullivan et al. 2018; Wheat and Wilmers 2016
Used flight initiation distance to identify human-induced fear responses in various species.	Halassi et al. 2022; Charutha et al. 2021; Gnanapragasam et al. 2021; Feng and Liang 2020a,b; Fujioka 2020; Hall et al. 2020; Jiang et al. 2020; Tryjanowski et al. 2020; Uchida et al. 2020; Zhou and Liang 2020; Linley et al. 2019; Morelli et al. 2019; Ordiz et al. 2019; Sbragaglia et al. 2018; Van Donselaar et al. 2018; Yamashita et al. 2018; Carrete et al. 2017; Jiang et al. 2017; Lethlean et al. 2017; Samia et al. 2017; Cavalli et al. 2016; Vincze et al. 2016; Bjorvik et al. 2015; Nunes et al. 2015; Sreekar et al. 2015; van Dongen et al. 2015; Kiffner et al. 2014; Mikula 2014; Guay et al. 2013; Moller 2012; Reimers et al. 2012; Carrete et al. 2010; Moller 2010
Wildlife in urban areas are less quick to flee than animals in rural areas.	Bjorvik et al. 2015; Carrete and Tella 2017; Cavalli et al. 2016; Charutha et al. 2021; Feng and Liang 2020b; Hall et al. 2020; Moller 2012; Morelli et al. 2019; Samia et al. 2017; Stillfried et al. 2017; Tryjanowski et al. 2020; Uchida et al. 2020; Vincze et al. 2016; Yamashita et al. 2018; Zhou and Liang 2020

909 * Note: this table is *not* an exhaustive summary of the literature in this review.